NOOR ALAM Online Technical Services

Pakistan Ist online technical Services Provider

NOOR ALAM Online Technical Services

Pakistan Ist online technical Services Provider

NOOR ALAM Online Technical Services

Pakistan Ist online technical Services Provider

NOOR ALAM Online Technical Services

Pakistan Ist online technical Services Provider

NOOR ALAM Online Technical Services

Pakistan Ist online technical Services Provider .

NEWS UPDATES
Welcome to NOOR ALAM's Online Technical solution we're provides Mechanical Electrical Instruments Civil online Services ,and many many more:
Showing posts with label PUMPS. Show all posts
Showing posts with label PUMPS. Show all posts

Saturday, December 17, 2016

Rotary Compressors

Introduction
Air compressors of various designs are used widely throughout DOE facilities in numerous applications. Compressed air has numerous uses throughout a facility including the operation of equipment and portable tools. Three types of designs include reciprocating, rotary, and centrifugal air compressors.

Rotary Compressors
The rotary compressor is adaptable to direct drive by induction motors or multicylinder gasoline or diesel engines. The units are compact, relatively inexpensive, and require a minimum of operating attention and maintenance. They occupy a fraction of the space and weight of a reciprocating machine of equivalent capacity. Rotary compressor units are classified into three general groups, slide vane-type, lobe-type, and liquid seal ring-type.

*The rotary slide vane-type, as illustrated in Figure 3, has longitudinal vanes, sliding radially in a slotted rotor mounted eccentrically in a cylinder. The centrifugal force carries the sliding vanes against the cylindrical case with the vanes forming a number of individual longitudinal cells in the eccentric annulus between the case and rotor. The suction port is located where the longitudinal cells are largest. The size of each cell is reduced by the eccentricity of the rotor as the vanes approach the discharge port, thus compressing the air.



*The rotary lobe-type, illustrated in Figure
4,
features two mating lobe-type rotors mounted in a case. The lobes are gear driven at close clearance, but without metal-to-metal contact. The suction to the unit is located where the cavity made by the lobes is largest. As the lobes rotate, the cavity size is reduced, causing
compression of the vapor within. The compression continues until the discharge port is reached, at which point the vapor exits the compressor at a higher pressure.


*The rotary liquid seal ring-type,
illustrated in Figure 5, features a forward inclined, open impeller, in an oblong cavity filled with liquid. As the impeller
rotates, the centrifugal force causes the seal liquid to collect at the outer edge of
the oblong cavity. Due to the oblong configuration of the compressor case, large longitudinal cells are created and reduced to smaller ones. The suction port is positioned where the longitudinal cells are the largest, and for the discharge port, where they are smallest, thus causing the vapor within the cell to compress as the rotor rotates. The rotary liquid seal compressor is frequently used in specialized applications for the compression of extremely corrosive and exothermic gasses and is commonly used in commercial nuclear plants as a means of establishing initial condenser vacuum.



Centrifugal Compressor

Introduction
Air compressors of various designs are used widely throughout DOE facilities in numerous applications. Compressed air has numerous uses throughout a facility including the operation of equipment and portable tools. Three types of designs include reciprocating, rotary, and centrifugal air compressors.


Centrifugal Compressors
The centrifugal compressor, originally
built to handle only large volumes of low

pressure gas and air (maximum of 40
psig), has been developed to enable it to
move large volumes of gas with discharge
pressures up to 3,500 psig. However,
centrifugal compressors are now most
frequently used for medium volume and
medium pressure air delivery. One
advantage of a centrifugal pump is the
smooth discharge of the compressed air.

The centrifugal force utilized by the
centrifugal compressor is the same force
utilized by the centrifugal pump. The air
particles enter the eye of the impeller,
designated D in Figure 6. As the impeller rotates, air is thrown against the casing of the compressor. The air
becomes compressed as more and more air is thrown out to the casing by the impeller blades.

The air is pushed along the path designated A, B, and C in Figure 6. The pressure of the air is increased as it is pushed along this path. Note in Figure 6 that the impeller blades curve forward, which is opposite to the backward curve used in typical centrifugal liquid pumps.

Centrifugal compressors can use a variety of blade orientation including both forward and backward curves as well as other designs.

There may be several stages to a centrifugal air compressor, as in the centrifugal pump, and the result would be the same; a higher pressure would be produced. The air compressor is used to create compressed or high pressure air for a variety of uses.

Some of its uses are pneumatic control devices, pneumatic sensors, pneumatic valve operators, pneumatic motors, and starting air for diesel engines.

Classification of Centrifugal Pumps

Centrifugal Pump Classification by Flow
Centrifugal pumps can be classified based on the manner in which fluid flows through the pump. The manner in which fluid flows through the pump is determined by the design of the pump casing and the impeller. The three types of flow through a centrifugal pump are radial flow, axial flow, and mixed flow.

Radial Flow Pumps
In a radial flow pump, the liquid enters at the center of the impeller and is directed out along the impeller blades in a direction at right angles to the pump shaft. The impeller of a typical radial flow pump and the flow through a radial flow pump are shown in Figure 6.

Fig 6 Radial Flow Centrifugal Pump
Axial Flow Pumps

In an axial flow pump, the impeller pushes the liquid in a direction parallel to the pump shaft. Axial flow pumps are sometimes called propeller pumps because they operate essentially the same as the propeller of a boat. The impeller of a typical axial flow pump and the flow through a radial flow pump are shown in Figure 7.

Fig 7 Axial Flow Centrifugal Pump
Mixed Flow Pumps
Mixed flow pumps borrow characteristics from both radial flow and axial flow pumps.
As liquid flows through the impeller of a mixed flow pump, the impeller blades push the liquid out away from the pump shaft and to the pump suction at an angle greater than 90o. The impeller of a typical mixed flow pump and the flow through a mixed flow pump are shown in Figure 8.

Fig 8 Mixed Flow Centrifugal Pump
Multi-Stage Centrifugal Pumps
A centrifugal pump with a single impeller that can develop a differential pressure of more than 150 psid between the suction and the discharge is difficult and costly to design and construct. A more economical approach to developing high pressures with a single centrifugal pump is to include multiple impellers on a common shaft within the same pump casing. Internal channels in the pump casing route the discharge of one impeller to the suction of another impeller.

Figure 9 shows a diagram of the arrangement of the impellers of a four-stage pump. The water enters the pump from the top left and passes through each of the four impellers in series, going from left to right. The water goes from the volute surrounding the discharge of one impeller to the suction of the next impeller.

A pump stage is defined as that portion of a centrifugal pump consisting of one impeller and its associated components. Most centrifugal pumps are single-stage pumps, containing only one impeller. A pump containing seven impellers within a single casing would be referred to as a seven-stage pump or, or generally, as a multi-stage pump.

Fig 9 Multi Stage Centrifugal Pump